ACETOXYMETHYLATION OF BENZENE, TOLUENE AND RELATED COMPOUNDS WITH TeO₂/HOAc^{*} Jan Bergman and Lars Engman Department of Organic Chemistry, Royal Institute of Technology, S-100 44 Stockholm 70, Sweden

Catalytic systems containing TeO₂ and HOAc have attracted considerable attention^{1,2} in recent years. Ethylene, for example, can be catalytically converted to ethylene glycol in high yields (95%):

$$C_{2}H_{4} + 1/2 O_{2} + 2 HOAc \xrightarrow{\text{TeO}_{2}} \text{AcOCH}_{2}CH_{2}OAc + H_{2}O$$

$$\xrightarrow{\text{AcOCH}_{2}CH_{2}OAc} + 2 H_{2}O \xrightarrow{\text{HOCH}_{2}CH_{2}OH} + 2 HOAc$$

$$C_{2}H_{4} + 1/2 O_{2} + H_{2}O \xrightarrow{\text{HOCH}_{2}CH_{2}OH} + OCH_{2}CH_{2}OH$$

Recently a group at Phillips Petroleum reported³ that alkyl-substituted aromatic compounds, not unexpectedly⁴, could be catalytically oxidized by a similar procedure. Thus toluene in one example (150 °C, 0_2 , 50 psig initially at 24 °C, HOAc, Te 0_2 , LiBr, LiN 0_3) gave benzyl acetate (76% yield) together with small amounts of benzaldehyde (7%), bromo-derivatives (8%) as well as other minor products (partly unspecified).

In this paper we report different results using similar systems (without introduction of pressured 0_2).

Relative yields⁵: ortho 50%, meta 12%, para 38%

*Part 2 in the series "Tellurium in Organic Synthesis". For part 1 see ref. 15.

The reactions are clean (no side-chain oxidation was observed) but slow,⁶ as contrasted with SeO₂. At higher temperatures (e.g. toluene, 160 °C) diarylmethanes are also formed. The more reactive the hydrocarbons are, the more pronounced are the formation of diarylmethane derivatives, and even more complex compounds. Thus, 1,3,5-trimethylbenzene gave the known trimeric compound $\underline{1}^7$ even at relativly low temperature (120 °C). 2-Methyl= indole gave a mixture of $\underline{2}$ and $\underline{3}$.⁸ Anthracene gave 9, 10-anthraquinone together with an isomer and 9-(9-anthrylmethylidene)-9,10-dihydroanthracene ($\underline{4}$), which can be isomerized⁹ to 9,9⁻- dianthrylmethane. 2-Ethylthiophene gave the compounds $\underline{5}$ and $\underline{6}$.

1=

N⊕ H⊕ Br[⊖] 2

Acetoxymethylation of aromatic substrates has earlier been effected with reagents such as $Mn(OAc)_3^{10,11}$ and $Pb(OAc)_4^{12}$. Heiba <u>et al</u>¹¹ found evidence for a mechanism involving attack by $\cdot CH_2COOH$ on the aromatic ring in the crucial step. Formation of several by-products such as methylation products and arylacetic acids further supported a radical mechanism. However, the absence of such products in the present case and the fact that HOAc, when refluxed with TeO₂ and LiBr, slowly yields acetoxyacetic acid¹³ and dibromomethane prompt us to suggest the foll-

The active alkylating agent should thus be acetoxycarbene (either free or complexed with Te). Alternatively a reaction pathway involving enolised carboxylate intermediates, as suggested for the conversion of Tl(III) carboxylates to α -acyloxy carboxylic acids, might be operative.¹⁴

REFERENCES AND NOTES

1.	J.Bergman, Kemisk Tidskrift 11, 62 (1976) and refs. therein.
2.	German Offenlegungsschrift 2.632.158 (1977) to Chem. System Inc.
3.	U.S. Pat. 4.048.238 (1977) to Phillips Petroleum Co.
4.	R.A. Sheldon and J.K. Kochi, Adv. in Catalysis 25, 272 (1976).
5.	The relative yields were determined by 1 H-NMR spectroscopy. Addition of Eu(FOD) $_3$
	resolved all signals completely.
б.	Addition of Ac_2^0 to the reaction mixture increased the reaction rate considerably.
7.	G. Montaudo, P. Finocchiaro, S. Caccamese and F. Bottino, J. Chem. Eng. Data 16,
	249 (1971).
8.	H. Budzikiewicz, H. Eckau and M. Ehrenberg, Tetrahedron Letters, 3807 (1972).
9.	D.E. Applequist and D.J. Swart, J. Org. Chem. 40, 1800 (1975).
10.	W.J. de Klein, Rec. Trav. Chim. 96, 22 (1977) and refs. therein.
11.	E.I. Heiba, R.M. Dessau and W.J. Koehl, Jr., J. Am. Chem. Soc. <u>91</u> , 138 (1969).
12.	E.I. Heiba, R.M. Dessau and W.J. Koehl, Jr., J. Am. Chem. Soc. <u>90</u> , 2706 (1968).
13.	This compound could replace acetic acid in the acetoxymethylations.
14.	E.C. Taylor, H.W. Altland and G. Mc Gillivray, Tetrahedron Letters, 5285 (1970).
15.	J. Bergman, Tetrahedron <u>28</u> , 3323 (1972).

(Received in UK 31 May 1978; accepted for publication 3 July 1978)